Seizure classification in EEG signals utilizing Hilbert-Huang transform
نویسندگان
چکیده
BACKGROUND Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. METHOD Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. RESULTS The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. CONCLUSION An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.
منابع مشابه
A Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملSeparation of Rhythms of EEG Signals Based on Hilbert-Huang Transformation with Application to Seizure Detection
We present a new method for separation of the rhythms of the electroencephalogram (EEG) signal. The proposed method is based on the Hilbert-Huang transform (HHT). The HHT consists two steps namely empirical mode decomposition (EMD) and the Hilbert transform (HT). The EMD decomposes EEG signal into set of narrow-band intrinsic mode functions (IMFs), and the Hilbert transformation of these IMFs p...
متن کاملEpileptic Seizure Prediction Using Hybrid Feature Selection
A comprehensive research of Electroencephalography (EEG) is carried out on Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) domains. In this scenario, the hybrid feature extraction is performed by utilizing entropy features like Shannon entropy, log-energy entropy and Renyi entropy. Generally, the entropy measures are effective in evaluation of non-linear interrelation an...
متن کاملEEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine
In this paper, we present a new method based on empirical mode decomposition (EMD) for classification of seizure and seizure-free EEG signals. The EMD method decomposes the EEG signal into a set of narrow-band amplitude and frequency modulated (AM-FM) components known as intrinsic mode functions (IMFs). The method proposes the use of the area parameter and mean frequency estimation of IMFs in t...
متن کاملPatient Specific Seizure Prediction System Using Hilbert Spectrum and Bayesian Networks Classifiers
The aim of this paper is to develop an automated system for epileptic seizure prediction from intracranial EEG signals based on Hilbert-Huang transform (HHT) and Bayesian classifiers. Proposed system includes decomposition of the signals into intrinsic mode functions for obtaining features and use of Bayesian networks with correlation based feature selection for binary classification of preicta...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2011